すていく

<ウェブサイト名>

<現在の時刻>

出典: 標準

教職員 / 学生限定 大学への寄付 日本語 ENGLISH 受験生 在学生 企業・研究者 地域・一般 卒業生 危機管理 ニュース イベント 九州大学について 総長室 基本情報 データで見る九州大学 広報 先生の森 組織一覧 大学の取組 将来計画・大学評価・IR 大学施設の利用 同窓会 大学への寄附 キャンパス移転など 公表事項 情報公開・個人情報保護 学部・大学院等 基幹教育院 学部・大学院 アドミッションポリシー 教学マネジメント3ポリシー 授業 (オンライン含む)・履修 オリエンテーション(学部新一年生) 特色ある教育プログラム 学年暦 教育・研究活動における安全管理 入試・入学 学部入試 大学院入試 入学料・授業料・奨学金 受験生向けサイト オープンキャンパス お問い合わせ 入学検定料の免除 キャンパスライフ 生活支援(キャンパスライフ) キャリア・就職支援 課外活動 学生後援会サイト 各種手続き 各種相談窓口 研究・産学官民連携 研究情報 研究者情報 特色ある研究の取組 社会連携 研究活動支援 産学官連携支援 研究倫理・生命倫理 研究・産学官連携支援体制 研究インテグリティ 国際交流・留学 Global Gateways 海外留学 九州大学への留学 国際交流 学内の国際交流 日本語 ENGLISH ニュース トピックス 特集 Discover The Research Research Close-Up 入試情報 お知らせ 入学者選抜方法の変更について お知らせ 重要 研究成果 Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability イベント イベントカレンダー カテゴリ別 公開講座 講演会等 展示 その他 場所 伊都キャンパス 箱崎サテライト 病院キャンパス 筑紫キャンパス 大橋キャンパス 別府キャンパス キャンパス外 九州大学について 総長室 総長式辞・挨拶等 Kyushu University VISION 2030 総長略歴 感謝状贈呈者 名誉博士 歴代総長 一億総活躍・地方創生 全国大会 in 九州 基本情報 運営・組織情報 憲章・基本理念 総長選考・監察会議 監事選考 規則・制度等 大学概要 沿革・歴史 九州大学応援歌・学生歌 将来計画・大学評価・IR 中期目標・中期計画・年度計画等 大学改革等への取組 ミッションの再定義 広報 刊行物 プレスリリース 定例記者会見 映像でみる九大 シンボルロゴについて ソーシャル・メディア 公式アカウント一覧 バーチャル背景 バーチャル背景(アーカイブ) 九州大学の研究者紹介 キャンパス移転など 伊都キャンパス完成記念行事について 伊都キャンパス完成記念ロゴマーク 伊都キャンパス完成記念式典 箱崎キャンパス跡地 原町農場跡地 大学施設の利用 椎木講堂 西新プラザ 医学部百年講堂 稲盛財団記念館 伊都キャンパス見学 東京・大阪・博多駅オフィス 九州大学の講義室・体育施設 九重共同研修所・山の家 日本橋サテライト 同窓会 同窓会連合会等 アカデミックフェスティバル 同窓生サロン 海外同窓会 大学への寄附 学部、学府(大学院)や研究者等へのご寄附 大学の取組 九州大学安全の日 ダイバーシティ、エクイティ、インクルージョンの促進 九州地区再生可能エネルギー連携委員会 男女共同参画 省エネルギー・温室効果ガス抑制の取組 クラウドファンディング 災害ボランティア活動について 敷地内全面禁煙 九州大学法被の貸出について ネーミングライツ QS-APPLE 2019 平成29年7月九州北部豪雨への対応 平成28年熊本地震への対応 東日本大震災への対応 令和6年能登半島地震への対応 組織一覧 附置研究所 学内共同教育研究センター 機構・推進室等 病院 図書館 博物館 その他拠点等 公表事項 信用格付 財務諸表等 財務レポート 法人情報 調達情報 人事方針 障害者支援について 役員及び教職員への兼業依頼 教育情報の公表 環境報告書 会議関係 在籍学生数 教員・職員公募情報 国立大学法人ガバナンス・コードにかかる適合状況等 大学設置関係の書類 調査統計資料 教員ハンドブック ハラスメントの防止・対策 情報公開・個人情報保護 情報公開制度 個人情報保護 お知らせ 学部・大学院等 基幹教育院 学部・大学院 アドミッションポリシー 医学部 比較社会文化学府 医学系学府 統合新領域学府 教学マネジメント3ポリシー 学部3ポリシー(~2020年度入学) 大学院3ポリシー(~2020年度入学) 学年暦 授業 (オンライン含む)・履修 カリキュラム 履修・シラバス オリエンテーション 学部紹介 学生証配布について その他のお知らせ 特色ある教育プログラム 先導的人材育成フェローシップ事業 チャレンジ21 博士課程教育リーディングプログラム 教育プログラム採択状況 教育・研究活動における安全管理 入試・入学 学部入試 アドミッションセンター インターネット出願 募集人員 大学案内・入学者選抜概要・募集要項 一般選抜 帰国生徒選抜 総合型選抜Ⅰ 総合型選抜Ⅱ 学校推薦型選抜 私費外国人留学生入試 国際入試 3年次編入学試験 障害等のある入学志願者について(学部) 高校卒業(程度)を満たさない者の受験資格について 入学者選抜実施状況 入学手続 各種資料の請求方法 大学院入試 募集要項 障害等のある入学志願者について(大学院) 入学料・授業料・奨学金 学生納付金 入学料免除、入学料の徴収猶予、新入生の授業料免除 奨学金 授業料の納付 入学料免除(徴収猶予)・授業料免除 高等教育の修学支援新制度による授業料等減免 被災学生への入学料免除・徴収猶予、授業料免除 入学検定料の免除 オープンキャンパス お問い合わせ FAQ キャンパスライフ 生活支援(キャンパスライフ) 研修所・学生関係施設 学生寮 健康管理 学生教育研究災害傷害保険(学研災)・学研災付帯賠償責任保険(付帯賠責) アルバイト 各種パンフレット・手引き等 学生生活ガイダンス その他 経済的支援(奨学金・授業料免除等) キャリア・就職支援 最新のお知らせ 年間スケジュール(就職対策講座等) OB・OG情報 システムの利用方法 学内合同企業説明会 その他の企業説明会 公務員・教員等採用情報 就職相談 就職情報室 キャリア教育 低年次学年向け情報 インターンシップ TOEIC対策プログラム 博士人材のための就職支援 外国人留学生のための就職支援 未内定の学生及び既卒者(卒業後3年以内)の皆様へ 障害のある学生のための就職支援 部局独自の就職支援 東京・大阪・博多駅オフィスの利用 各種情報サイト 過去の就職状況 採用選考に関する指針 学内合同企業説明会 学内個別企業説明会 博士人材のための企業説明会 本学へのご訪問 求人情報ご提供 OB・OG名簿ご提供 インターンシップ 外国人留学生の採用 採用選考に関する指針 就職担当 課外活動 課外活動における安全対策講習会 各種手続き 各種証明書の発行 国民年金への加入 学生の旧姓使用 学生の通称名使用 長期履修学生制度 各種相談窓口 何でも相談窓口 学位審査に関する通報窓口 学生モニター会議 研究・産学官民連携 研究情報 研究の取組紹介 Discover The Research Research Close-Up 特色ある研究の取組 社会連携 九州⼤学社会教育主事講習 共催等名義使用について 学内バス停への掲示について 研究活動支援 学内相談 研究戦略推進 研究費獲得支援 その他の研究活動支援 産学官連携支援 技術相談 知的財産の管理・活用 共同研究・受託研究 組織対応型連携 共同研究部門 研究倫理・生命倫理 適正な研究活動の推進について 研究倫理教育(eAPRIN) 研究費の不正防止について 放射線障害防止(RI・X線) 医の倫理 研究インテグリティ 研究・産学官連携支援体制 国際交流・留学 海外留学 各種留学プログラム 奨学金 留学ガイド ダブル・ディグリー プログラム 危機管理 九大から世界へ 九州大学への留学 九大への入学 国際コース(英語で学位が取れるコース) ダブル・ディグリー プログラム 協定校からの交換留学受入れ 短期受入プログラム等 その他の受入プログラム 奨学金 宿舎 世界から九大へ 国際交流 国際戦略 海外オフィス 等 国際交流のデータ 協定校 安全保障輸出管理 表敬訪問 グローバルネットワーク 学内の国際交流 ・受験生 ・企業・研究者 ・地域・一般 ・在学生 ・卒業生 ・教職員 / 学生限定 ・大学への寄付 危機管理 ・採用情報 ・資料請求 ・サイトポリシー ・お問い合わせ ・アクセス ・サイトマップ Research Results 研究成果 トップページ ニュース 研究成果 いかなる方向にもよく伸びるセラミック材料のしくみを解明 いかなる方向にもよく伸びるセラミック材料のしくみを解明 ~立方晶のように見えるのになぜ優れた圧電性をもつのか?~ 2020.10.13 研究成果MaterialsTechnology 【本研究成果のポイント】・チタン酸バリウム、マグネシウムチタン酸ビスマス、および、ビスマスフェライトを固溶させて合成したセラミック材料が、一見しただけでは結晶を構成する単位格子の形が立方体に見えるにもかかわらず、優れた強誘電性と圧電性を示すことを発見。・みだれた原子配置のビスマスイオンが電場印加方向に偏って結晶格子を大きくひずませることが強誘電性・圧電性の起源であることを放射光X線回折実験で解明。・構造みだれの電場による制御という新しい概念による強誘電体・圧電体材料の開発を提案する研究成果。【概要】 広島大学大学院先進理工系科学研究科教授の黒岩芳弘、森吉千佳子、同助教のキム・サンウク、広島大学大学院理学研究科博士課程後期学生の中平夕貴、山梨大学大学院総合研究部教授並びに東京工業大学元素戦略研究センター特定教授の和田智志、山梨大学大学院総合研究部准教授の上野慎太郎、同助教の藤井一郎と、九州大学大学院工学研究院准教授の佐藤幸生からなる共同研究グループは、結晶系が立方晶系に見えるにもかかわらず、優れた強誘電性(*1)と圧電性(*2)を示すセラミック材料の合成に成功し、大型放射光実験施設SPring-8(*3)BL02B2における放射光X線回折実験により、機能発現のメカニズムを解明しました。 一般に、結晶系が立方晶系に帰属する物質が強誘電性を示すことは結晶学的にあり得ません。したがって、そのような物質が優れた圧電性をもつことも期待できません。しかし、チタン酸バリウム(BaTiO3: BT)、マグネシウムチタン酸ビスマス(Bi(Mg0.5Ti0.5)O3: BMT)、ビスマスフェライト(BiFeO3: BF)を固溶させてセラミック材料を合成したところ、結晶系が立方晶系に見えるにもかかわらず、優れた強誘電性を示すことを発見しました。また、よく使われている圧電材料であるチタン酸ジルコン酸鉛(Pb(Zr, Ti)O3: PZT)(*4)に迫る圧電性を示すことも発見しました。SPring-8において電場印加(*5)下でのX線回折実験を行ったところ、ビスマスイオンだけが理想的な原子位置からずれた結晶構造をしており、電場(電圧)を印加すると、電場方向にビスマスイオンが偏って結晶格子を大きくひずませることが、この一見立方晶系に見えるセラミックス材料に優れた強誘電性・圧電性が観測される仕組みであることを見出しました。結晶系が立方晶系に限りなく近いことから(擬立方晶系:pseudo-cubic)、セラミック粒の如何なる方向に電場印加しても結晶格子が電場方向によく伸びることも確認しました。特異な構造みだれのある材料を合成すれば、たとえ立方晶に見えても、その構造みだれを電場で制御することで高性能な強誘電体・圧電体材料として機能する可能性を示した研究成果です。 本研究成果は、英国の学術出版社であるシュプリンガー・ネイチャーがオープンアクセス・ポートフォリオを拡大するために2020年に創刊した材料系のネイチャー・リサーチ・ジャーナル「Communications Materials」のオンライン版に2020年10月6日付で掲載されました。 【背景】 スピーカーやマイク、ソーナーなど、多くの電子部品やセンサーには、主要材料の圧電セラミックスとして、PZTが使用されてきました。PZTは、極めて優れた圧電特性をもつために、今なお至便な圧電材料です。しかし、PZTは有害な鉛を含むために、近年、環境に優しい高性能な非鉛系圧電材料の開発が求められるようになってきました。我々の研究グループでは、山梨大学並びに東京工業大学元素戦略センターでの長年の元素戦略プロジェクトのもと、新奇発想に基づき物質探索を行ってきた結果、BT-BMT-BF系セラミック材料が高性能非鉛系圧電材料候補となりうることを発見していました。また、同時に、結晶系が立方晶系に見えることも見出していました。このような擬立方晶系の結晶構造をもつ材料が優れた圧電性を示す仕組みが理解できれば、非鉛系圧電材料開発のための新たな材料設計指針が提案できると考え本研究に着手しました。 【研究成果の内容】 本研究では、主として山梨大学および東京工業大学のグループがセラミックス材料の合成と電気特性の評価を行いました。広島大学と九州大学のグループは結晶構造の評価を行いました。 BT-BMT-BFセラミック試料は、BTなどの粉末状の原材料を混合し、錠剤の形状に成形した後、高温で焼成することで作製しました。走査電子顕微鏡で観測したところ、2~5 μmのセラミックス粒からなることがわかりました。強誘電体評価装置により誘電特性を調べたところ、図1に示すような強誘電体に特徴的な分極曲線が得られました。材料が電場0の状態で電気を蓄えることのできる指標としての自発分極の大きさは、コンデンサー用の基本材料にも使われている強誘電体材料であるBTをはるかにしのぐ大きさでした。また、歪(ひずみ)曲線から、非鉛系材料であるにもかかわらず、鉛系の圧電材料であるPZTの約2/3程度の優れた圧電性をもつことがわかりました。 このセラミックス試料のX線回折パターンを測定してみると、図2に示すように単一ピークに見える鋭い回折ピークが観測されました。まるで、結晶系が立方晶系のように見えます。セラミックス試料に電場を印加するとそれぞれのピークがそのまま大きくシフトしたので、そのシフト量から立方晶系の軸方向([100]方向)、対角方向([110]方向)、体対角方向([111]方向)に電場が印加された時の格子歪を見積もると図2の挿入図のような結果が得られました。図1の結果とほぼ同じ結果が得られたので、電場印加下でセラミックスの外形が変化する起源が主として結晶格子の伸縮によるものであることがわかりました。 一方、立方晶系で強誘電性を示すとなると結晶学に矛盾します。放射光X線回折実験で得られた回折パターンから対称性を詳細に解析した結果、BT-BMT-BFセラミックスの結晶構造は立方晶系ではなく、結晶軸の間の角度が90°からわずか0.024°ずれた菱面体晶系であることがわかりました。それでも、このように限りなく立方晶系に近い物質が優れた強誘電性と圧電性を示すことは不思議なことです。そこには、何か新しい強誘電性と圧電性の発現機構があると考え原子配置をより詳細に解析しました。 図3に放射光X線回折パターンを解析することで得られたBT-BMT-BFセラミックスの結晶構造を示します。結晶構造は、ペロブスカイト型構造と呼ばれるもので、立方体に見える単位格子の角にバリウムまたはビスマスイオンが、体心にチタン、マグネシウムまたは鉄イオンが、そして、面心には酸素イオンが配置することが理想形です。しかし、電場ゼロにおいて、ビスマスイオンだけ単位格子の角の位置から結晶軸に沿った6方向の内、いずれかの方向に約0.04 nmだけずれた位置に配置していました。立方体の辺の長さが約0.4 nmなのでとても大きなずれです。このビスマスイオンの構造みだれが静的なものか、あるいは、6方向を熱的に飛び移っている動的なものかはX線回折実験だけで判断するのは難しいです。九州大学の超顕微解析研究センターにおいて、原子像まで判断できる高分解能透過電子顕微鏡観察により、静的なものであるという決定的な証拠が得られています。 このような結晶の[001]、[011]、[111]方向にそれぞれ電場を印加すると、図3に示すように、ビスマスイオンは結晶軸に沿ってずれた位置に配置するという性質はそのままですが、電場印加方向に集合することが電場印加下でのX線構造解析によりわかりました。このビスマスイオンの電場下での配置の偏りのためにBT-BMT-BFセラミックスは分極すると同時に圧電性も示します。 図1 BT-BMT-BFセラミックスに電場を印加したときの強誘電性を示す分極曲線と圧電性を示す試料形状の歪曲線。 図2 BT-BMT-BFセラミックスのX線回折パターンと電場印加下でのX線回折実験から求めた格子歪曲線(挿入図)。 図3 BT-BMT-BFセラミックスの電場ゼロおよび電場を[001]、[011]、または[111]方向に印加したときの結晶構造。単位格子の角から結晶軸の方向にずれた位置にある紫色のイオンがビスマスイオンであり、電場を印加するとビスマスイオンが電場方向に集合しようとする。ビスマスイオンの存在確率を球の大きさで示している。  セラミックス材料はランダムな方向を向いたセラミック粒で構成されています。BT-BMT-BFセラミックスの場合、通常の圧電セラミックスとは異なり、いかなる方向に電場印加してもその方向にビスマスイオンが偏ることができるので、すべてのセラミック粒が電場に対して応答できます。そのイメージを図4に示しました。このことが大きな圧電性の起源であることを発見しました。 図4 BT-BMT-BFセラミックスに電場印加したとき、ランダムな方向を向いたすべてのミクロなセラミック粒が電場に応答して伸縮するイメージ。その結果、セラミックス全体は電場方向にマクロによく伸びる。 【今後の展開】 本研究では、BT-BMT-BFセラミックスが非鉛圧電材料として、PZTの代替材料になる可能性を見出したことに加え、擬立方晶系の物質が優れた強誘電性・圧電性を示すしくみをはじめて解明しました。通常は、電場ゼロの結晶構造からある程度の自発分極の大きさ等を予想することができるのですが、BT-BMT-BFセラミックスの場合、全くの予想を超える値が実測されました。構造みだれの電場による制御という新しい概念を使えば、より高性能な強誘電体・圧電体材料が開発できると期待しています。【用語解説】(*1)強誘電性 物質に外部から電場を印加しなくても、物質内で電気的にプラスとマイナスに分極したミクロな双極子が整列しており、双極子の方向を電場によって変化できる性質のこと。強誘電性をもつものは圧電性をもつ。(*2)圧電性 物質に外部から応力を加えると、分極する性質。そのような物質は、逆に、外部から電場を印加すると変形する逆圧電性も示す。これらの現象をまとめて圧電性ということもある。圧電材料は、電気的エネルギーを機械的エネルギーに可逆的に変換できる。圧電性をもつものは、必ずしも強誘電性をもつとは限らない。(*3)大型放射光実験施設SPring-8 兵庫県の播磨科学公園都市にある世界最高性能の放射光を生み出す施設。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げたときに発生する、指向性が高く強力な電磁波のこと。SPring-8では、波長の短い高エネルギーX線を用いた高精度の回折実験が可能なため、今回のようなX線の吸収の大きなビスマスイオンとX線の散乱能の低い酸素イオンを同時に含むような物質でも精密に構造解析することができた。(*4)チタン酸ジルコン酸鉛(Pb(Zr, Ti)O3: PZT) チタン酸鉛とジルコン酸鉛の混晶でペロブスカイト型構造をもつ強誘電体。セラミック材料の中で優れた圧電性をもつため、多くの電子部品やセンサーなどに使用されている。(*5)電場印加 誘電体(絶縁体のこと)材料の対向する面に電極を取り付けて外部から電圧をかけること。金属などの導体では電圧をかけると電流が流れてしまうが、誘電体の場合は、電流が流れずに、例えば、材料を構成するイオンがわずかに電極側にシフトすることにより分極し、いわゆる電気がたまる。【謝辞】 SPring-8での実験は、主としてBL02B2粉末構造解析ビームラインにおいて、パートナーユーザープロジェクト(2017A0074)により行われました。実験では、ビームライン担当者の河口彰吾博士から多大なる支援を賜りました。 また、本研究は、日本学術振興会科学研究費補助金(JP17H02776、JP20H02641)およびMEXT Element Strategy Initiative to Form Core Research Center(元素戦略プロジェクト<研究拠点形成型>「東工大元素戦略拠点(TIES)」)(JPMXP0112101001)の支援を受けて行われました。 本研究についての詳細はこちら 論文情報 Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations,Communications MaterialsDOI: 10.1038/s43246-020-00072-4 研究に関するお問い合わせ先 工学研究院 佐藤幸生 准教授 ツイート 一覧に戻る トップページ ニュース 研究成果 いかなる方向にもよく伸びるセラミック材料のしくみを解明 研究成果 Humanities & Social Sciences Art & Design Life & Health Math & Data Physics & Chemistry Materials Technology Environment & Sustainability 年別 2024年 2023年 2022年 2021年 2020年 2019年 2018年 2017年 2016年 2015年以前 九州大学Kyushu University〒819-0395 福岡市西区元岡744 お問い合わせ | アクセス 採用情報 学部・大学院等 国際交流・留学 資料請求 入試・入学 ニュース サイトポリシー 研究・産学官連携 イベント サイトマップ キャンパスライフ 九州大学について COPYRIGHT © KYUSHU UNIVERSITY. ALL RIGHTS RESERVED.

カジノミーの評判・ボーナス詳細ガイド - ネットカジノ サッカー予想賭け link188betvui Crypto casino Stake.com denies trademark claims
Copyright ©すていく The Paper All rights reserved.